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Numerical modeling of wave propagation is es-
sential for a large number of applied problems in
acoustics, elasticity, and electromagnetics. The
acoustic equation is one of the simplest exam-
ples of equation modeling wave propagation. For
long integration times, the dominant contribu-
tions to an error in the solution come from such
numerical artifacts as numerical dispersion and
numerical anisotropy. The numerical dispersion
is the phenomenon in which the propagation ve-
locity of the wave in the numerical scheme de-
pends on its wavelength, while in the continuum
problem there is no such dependence. Typically,
the effect of the numerical dispersion is greater
on under-resolved waves with ten or less points
per wavelength, making them travel slower than
in the physical problem. As a consequence, the
wave does not just arrive at a wrong time (which
could be compensated by time re-scaling) but it
also has a highly distorted profile. The numerical
anisotropy is the dependence of the numerical ve-
locity of the wave on its orientation with respect
to the mesh. For a 2D acoustic wave equation
we developed an adaptation technique, dubbed m-
adaptation, that selects an optimal member of a
rich parameterized family of second order meth-
ods with smallest (fourth order) dispersion and
(sixth order) anisotropy.

The semi-discrete form of the acoustic wave
equation in the time domain formulation is

Mutt = Au, (1)

where the mass and stiffness matrices M and A are
assembled from elemental matrices ME and AE .

Since the mass matrix M has to be inverted
on every time step, the explicit time discretiza-
tion of equation (1) is computationally efficient
only when the inverse M−1 is easy to compute.
One of the approaches is to replace the mass

matrix M with a diagonal matrix D by lumping
non-diagonal entries to the diagonal. This does
not change the order of the numerical scheme
but may lead to undesirable increase of numeri-
cal dispersion. Another approach (see e.g. [2])
is to replace the inverse M−1 with the product
D−1MD−1, where the inverse is taken only for the
diagonal matrix D. Similar to lumping, this ap-
proach does not change the order of the numerical
scheme but may also result in the increase of the
numerical dispersion. To compensate for the pos-
sible increase of the dispersion one can modify
the stiffness and the mass matrices A and M using
modified quadrature rules as it is done in [2].

In the m-adaptation approach, we consider a
parameterized Mimetic Finite Difference (MFD)

A more narrow band of values in the disper-
sion curves for the m-adaptation method (bottom)
compared to the modified quadrature method [2]
(top) for various angles θ between the planar
wave and the mesh axis for the Courant number
c∆t
h = 0.75 indicates smaller anisotropy.
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Displacement as a function of the distance from the origin at time T = 0.9 obtained using the modified
quadrature method (top) and the m-adaptation method (bottom) for a Gaussian initial displacement data.

family of numerical schemes from which we se-
lect a member with the smallest numerical dis-
persion and anisotropy (see [1] for details). The
parameters in the MFD family appear through the
elemental mass and stiffness matrices MMFD

E and
AMFD

E , respectively. The elemental mass matrix
MMFD

E on a square element E depends on two pa-
rameters m1,m2 while the elemental stiffness ma-
trix AE depends on one parameter ζ.

The MFD family parameterized by (m1,m2,ζ)
contains a large number of known methods as
special cases, e.g.: standard Finite Difference
(FD), rotated FD, weighted combination of stan-
dard and rotated FD, Finite Element (FE) with
lumped mass matrix, and modified quadrature
method of Guddati and Yue [2]. Moreover, com-
pared with the later method, the MFD family is
richer – it contains one extra parameter.

For the acoustic wave equation in 2D the opti-
mal parameters (m1,m2,ζ) can be selected based
on the von-Neumann analysis. One obtains a lo-
cal dispersion equation relating the numerical ve-
locity of the wave ch with its wave number κ,
mesh size h, and the parameters (m1,m2,ζ). Ex-
pending the the error between the physical and
numerical velocities of the wave, c− ch, in pow-
ers of wave resolution number, κh, we select the

parameters (m1,m2,ζ) to eliminate the error at the
leading powers of κh. As a result of m-adaptation
the numerical velocity ch is accurate to the fourth
order in dispersion (as in [2]) and to the sixth or-
der in the anisotropy (versus fourth order in [2]).

In the future we plan to develop the m-
adaptation technique for higher order schemes on
general meshes and for elastic wave equations.
The potential of m-adaptation is high as with in-
crease of the order of the scheme and/or the num-
ber of vertices in the element the number of free
parameters grows quadratically. This may lead
to a dramatic improvement in the dispersion and
anisotropy of the optimal scheme.
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